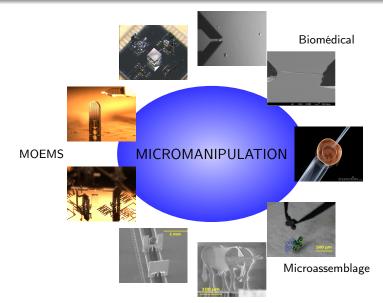
Conception, fabrication et commande d'un microrobot numérique planaire, non-redondant et en technologie MEMS

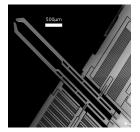
Encadrement : Yassine Haddab, Philippe Lutz

Vincent Chalvet

08 Mars 2013



Besoins en micromanipulation

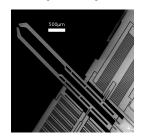


Outils de micromanipulation

Préhenseurs

 $[\mathsf{Femto}\text{-}\mathsf{st}]$

[FemtoTools]


2/38

Outils de micromanipulation

Préhenseurs

[Femto-st]

[FemtoTools]

Microrobots porteurs

[Femto-st]

10mm

[Kleindiek]

[Asyril]

Défauts des microrobots porteurs

Miniaturisation d'architectures robotiques traditionnelles

- friction, jeu mécanique, lubrification, ...
- \ précision

Défauts des microrobots porteurs

Miniaturisation d'architectures robotiques traditionnelles

Matériaux actifs

- friction, jeu mécanique, lubrification, ...
- \ précision
- petites résolutions
- non-lineaire / non-stationnaire
- commande complexes

Défauts des microrobots porteurs

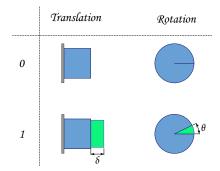
Miniaturisation d'architectures robotiques traditionnelles

Matériaux actifs

Nombreux capteurs

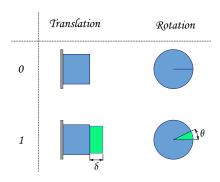
- friction, jeu mécanique, lubrification, ...
- \ précision
- petites résolutions
- non-lineaire / non-stationnaire
- commande complexes
- onéreux
- encombrants

Sommaire

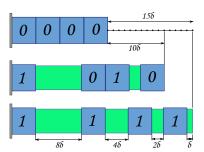

- 1 La robotique numérique
- 2 Le DiMiBot
- 3 Dimensionnement
- Microfabrication et caractérisation
- 5 Planification de trajectoire
- 6 Conclusion et perspectives

Sommaire

- 1 La robotique numérique
- Le DiMiBot
- 3 Dimensionnemen
- Microfabrication et caractérisation
- 6 Planification de trajectoire
- 6 Conclusion et perspectives

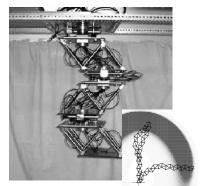

Nouveau paradigme

Actionneur binaire



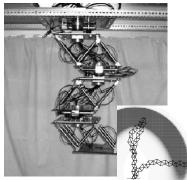
Nouveau paradigme

Actionneur binaire

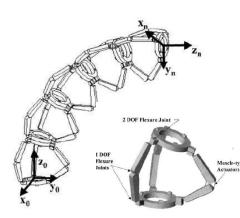


Robot numérique

Robots numériques existants

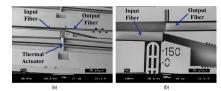

VGT : Variable Geometry Truss

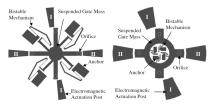
[Chirikjian 94]


Robots numériques existants

VGT: Variable Geometry Truss

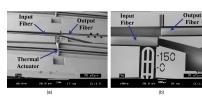
[Chirikjian 94]

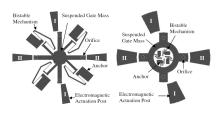

BRAID : Binary Robotic Articulated Intelligent Device


[Sujan_01]

Approches binaires à l'échelle micro

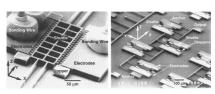
Actionneurs binaires


[Cochran 05]

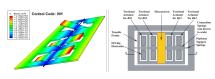

[Luharuka 08]

Approches binaires à l'échelle micro

Actionneurs binaires

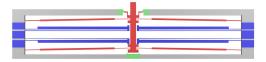


[Cochran 05]

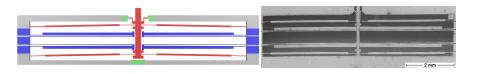


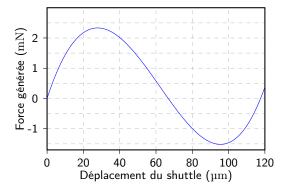
[Luharuka 08]

CNA mécaniques

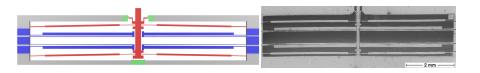


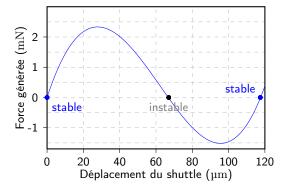
[Toshiyoshi 99]

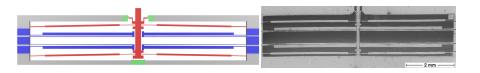


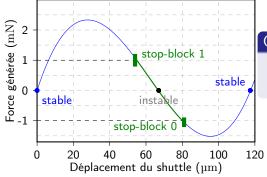

[Zhou_04]

Le Module Bistable




Le Module Bistable




Le Module Bistable

Le Module Bistable

Caractéristiques

- déplacement $\Delta = 25 \, \mu \mathrm{m}$
- ullet force de blocage $= 1\,\mathrm{mN}$

Sommaire

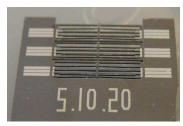
- 1 La robotique numérique
- 2 Le DiMiBot
- 3 Dimensionnement
- Microfabrication et caractérisation
- 6 Planification de trajectoire
- 6 Conclusion et perspectives

Cahier des charges

Architecture robotique

- o commande en boucle ouverte
- indépendance au bruit
- petite dimension du microrobot
- structure monolithique
- modélisation simple du robot

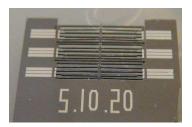
Cahier des charges


Architecture robotique

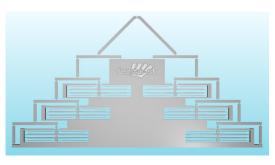
- commande en boucle ouverte
- indépendance au bruit
- petite dimension du microrobot
- structure monolithique
- modélisation simple du robot

Espace de travail généré

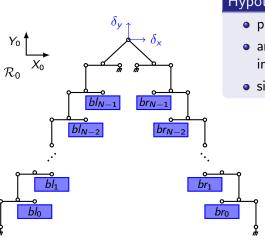
- discret planaire, de forme carrée
- distribution equidistante des positions atteignables
- résolution de positionnement sub-micrométrique
- bonnes performances de stabilité, robustesse et répétabilité


Cinématique choisie

Cinématique sérielles fortement problématique


- poids
- fils d'alimentation

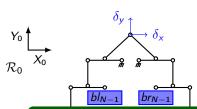
Cinématique choisie



Cinématique sérielles fortement problématique

- poids
- fils d'alimentation

Modèle géométrique direct



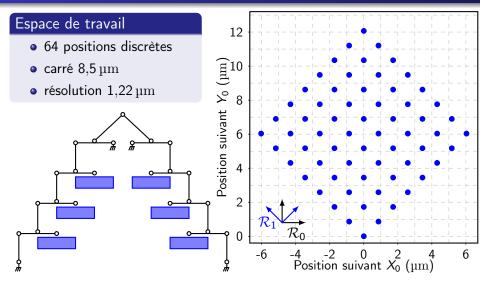
Hypothèses

- poutres parfaitement rigides
- articulations parfaites (centre instantané de rotation fixe)
- simplification des petits angles

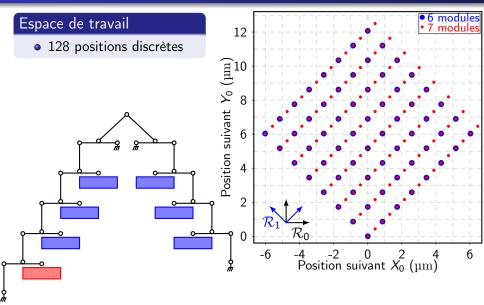
Conclusion

Modèle géométrique direct

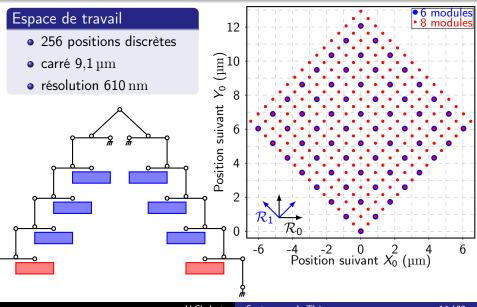
Hypothèses

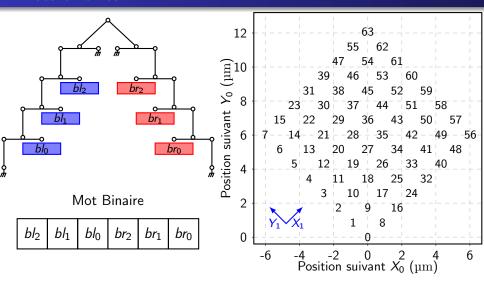

- poutres parfaitement rigides
- articulations parfaites (centre instantané de rotation fixe)
- simplification des petits angles

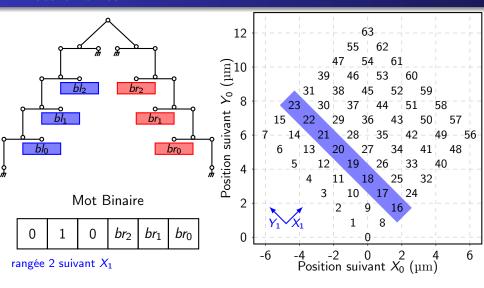
MGD généralisé

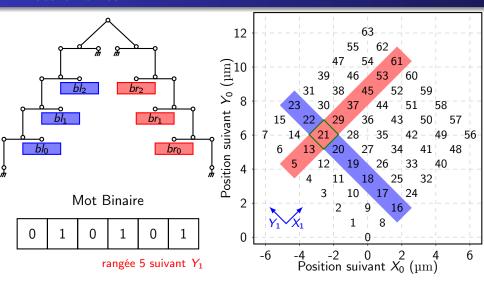


$$\begin{bmatrix} \delta_{\mathsf{x}} \\ \delta_{\mathsf{y}} \end{bmatrix} = \mathsf{K} \begin{bmatrix} 1 & \dots & \left(\frac{1}{2}\right)^{\mathsf{N}-1} & -1 & \dots & -\left(\frac{1}{2}\right)^{\mathsf{N}-1} \\ 1 & \dots & \left(\frac{1}{2}\right)^{\mathsf{N}-1} & 1 & \dots & \left(\frac{1}{2}\right)^{\mathsf{N}-1} \end{bmatrix} \begin{bmatrix} \lambda & \lambda \\ \vdots \\ bl_0 \\ br_{\mathsf{N}-1} \\ \vdots \end{bmatrix}$$


Espace de travail atteignable


Espace de travail atteignable


Espace de travail atteignable

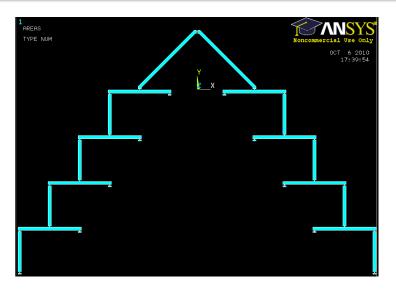

Mots binaires

Mots binaires

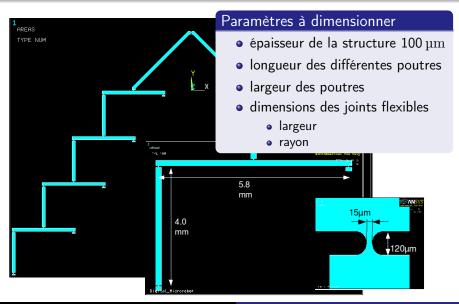
Mots binaires

Modèle Géométrique inverse

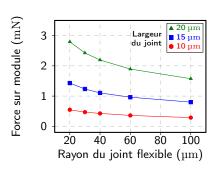
Seul paramètre nécessaire : résolution de l'espace de travail.

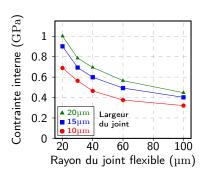

MGI $\begin{cases} bl_i = \left(\left(\left\lfloor \frac{x_d}{r_x} \right\rceil & 2^i \right) \neg = 0 \right) \\ br_j = \left(\left(\left\lfloor \frac{y_d}{r_y} \right\rceil & 2^j \right) \neg = 0 \right) \end{cases}$

- |] : fonction arrondi (entier le plus proche)
- x_d , y_d : coordonnées dans le repère \mathcal{R}_1 de la position désirée
- r_x , r_y : résolutions de l'espace de travail dans les directions X_1 et Y_1 respectivement
- \neg = : test booléen de différence

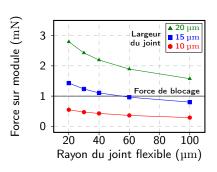

Sommaire

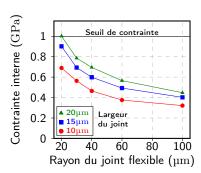
- 1 La robotique numérique
- Le DiMiBot
- 3 Dimensionnement
- Microfabrication et caractérisation
- 5 Planification de trajectoire
- 6 Conclusion et perspectives

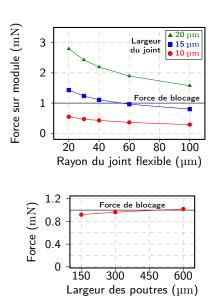

Paramètres

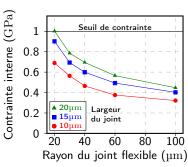


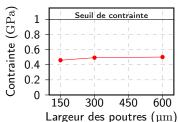
Paramètres




Force et contrainte




Force et contrainte



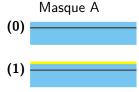
Force et contrainte

Force extérieure

Sommaire

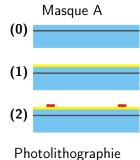
- 1 La robotique numérique
- Le DiMiBot
- 3 Dimensionnemen
- Microfabrication et caractérisation
- 5 Planification de trajectoire
- 6 Conclusion et perspectives

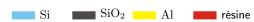
Process de microfabrication

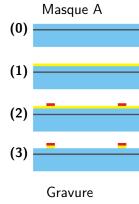

Masque A
(0)

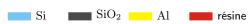
Wafer SOI

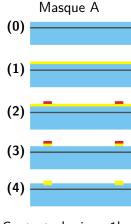
- \bullet 100 μm device layer
- 1 μm oxyde
- 300 μm handle layer

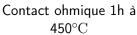



Process de microfabrication

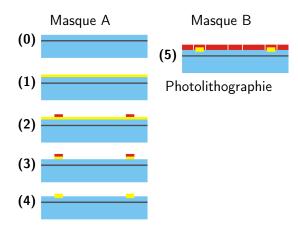


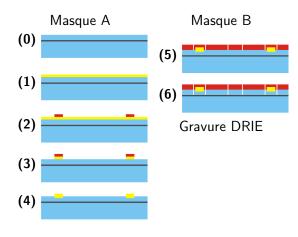

Dépot d'aluminium



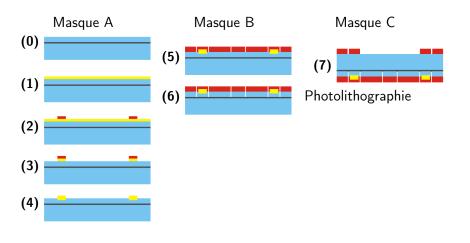


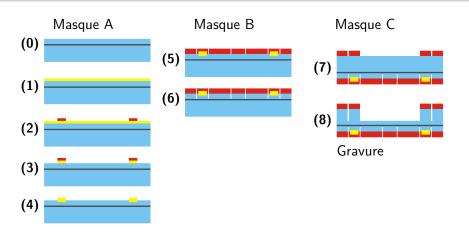
Process de microfabrication

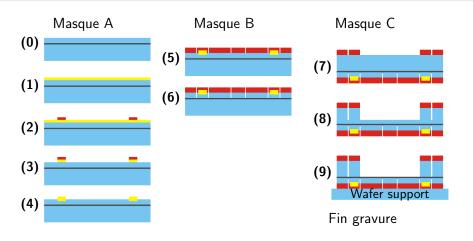


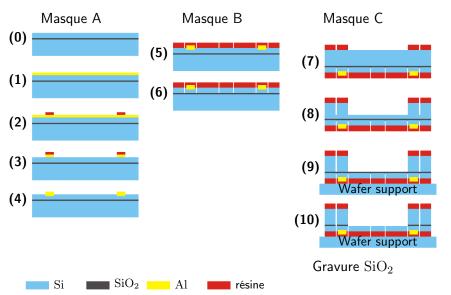

 SiO_2

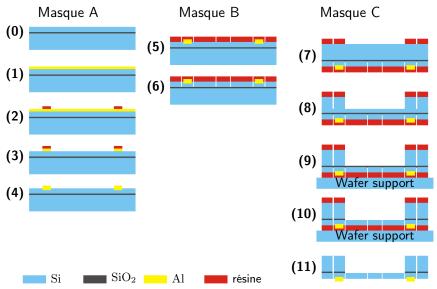
Si

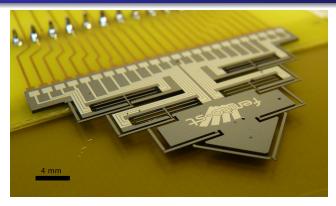




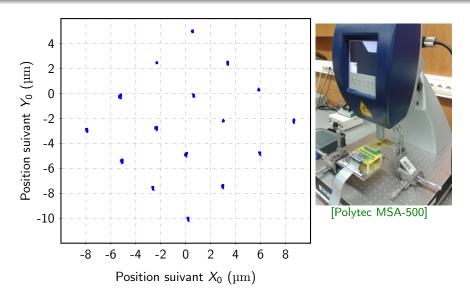


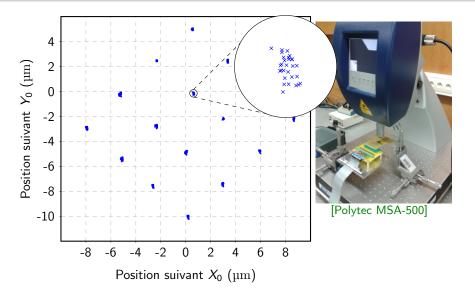


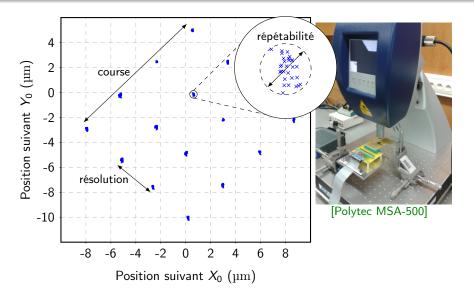


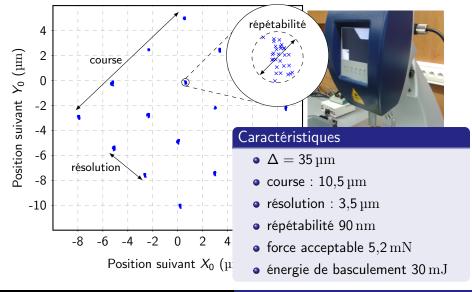


Premier prototype




DiMiBot à 4 modules


largeur: $36\,\mathrm{mm}$


 $hauteur:24\,\mathrm{mm}$

épaisseur : 400 μm

Sommaire

- 1 La robotique numérique
- Le DiMiBot
- 3 Dimensionnemen
- Microfabrication et caractérisation
- 5 Planification de trajectoire
- 6 Conclusion et perspectives

Commande du DiMiBot

Volonté:

 contrôle précis de la trajectoire empruntée par l'organe terminal

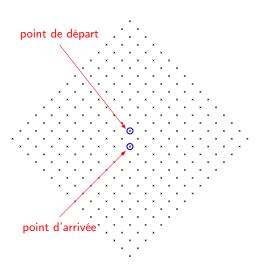
Commande du DiMiBot

Volonté:

 contrôle précis de la trajectoire empruntée par l'organe terminal

Solution:

 basculement d'un seul module à la fois

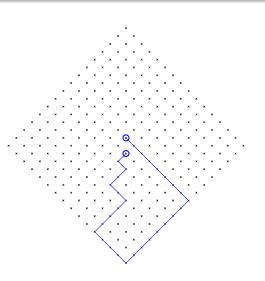

Commande du DiMiBot

Volonté :

 contrôle précis de la trajectoire empruntée par l'organe terminal

Solution:

 basculement d'un seul module à la fois


Commande du DiMiBot

Volonté :

 contrôle précis de la trajectoire empruntée par l'organe terminal

Solution:

 basculement d'un seul module à la fois

Théorie des graphes

DiMiBot à 4 modules

15

(11)

(10)

3

2

6

(5) (1)

(0)

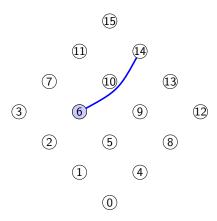
nœud 6

12

8

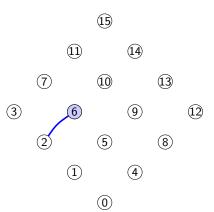
13

4)


Mot Binaire bl_1 bl_0 br_1 br_0 0 1 1 0

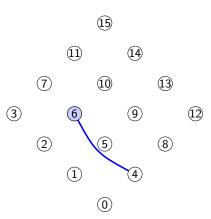
V.Chalvet

Soutenance de Thèse

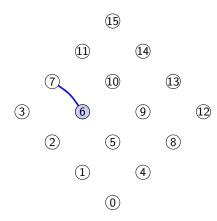

Théorie des graphes

DiMiBot à 4 modules

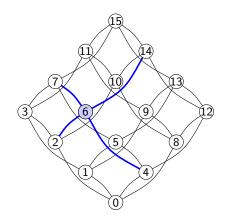
Théorie des graphes


DiMiBot à 4 modules

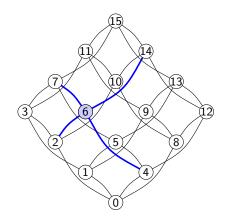
Mot Binaire $bl_1 \ bl_0 \ br_1 \ br_0$ nœud 6 0 1 1 0 nœud 2 0 0 1 0


Théorie des graphes

DiMiBot à 4 modules


Théorie des graphes

DiMiBot à 4 modules


Théorie des graphes

DiMiBot à 4 modules

Théorie des graphes

DiMiBot à 4 modules

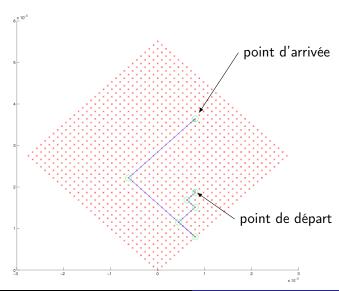
Mot Binaire $bl_1 \ bl_0 \ br_1 \ br_0$ nœud 6 0 1 1 0

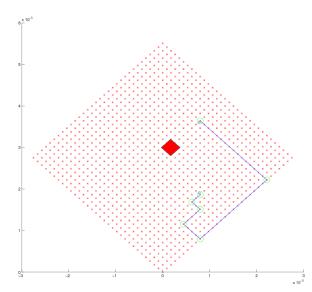
Choix d'une fonction de coût

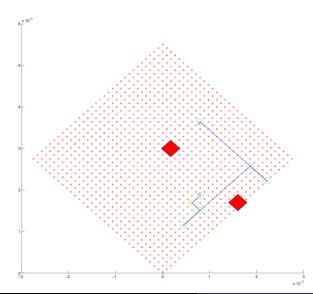
- nombre de basculement
- distance parcourue (= 2^i pour les modules bl_i et br_i)

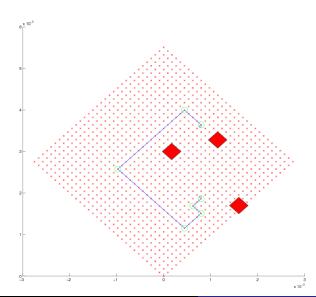
Matrice d'adjacence

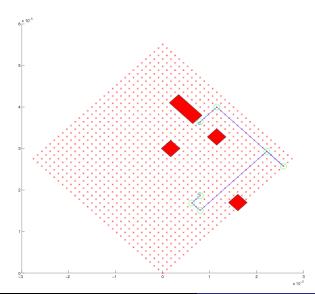
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	0	1	0	0	0	2	0	0	0	0	0	0	0
1	1	0	0	2	0	1	0	0	0	2	0	0	0	0	0	0
2	2	0	0	1	0	0	1	0	0	0	2	0	0	0	0	0
3	0	2	1	0	0	0	0	1	0	0	0	2	0	0	0	0
4	1	0	0	0	0	1	2	0	0	0	0	0	2	0	0	0
5	0	1	0	0	1	0	0	2	0	0	0	0	0	2	0	0
6	0	0	1	0	2	0	0	1	0	0	0	0	0	0	2	0
7	0	0	0	1	0	2	1	0	0	0	0	0	0	0	0	2
8	2	0	0	0	0	0	0	0	0	1	2	0	1	0	0	0
9	0	2	0	0	0	0	0	0	1	0	0	2	0	1	0	0
10	0	0	2	0	0	0	0	0	2	0	0	1	0	0	1	0
11	0	0	0	2	0	0	0	0	0	2	1	0	0	0	0	1
12	0	0	0	0	2	0	0	0	1	0	0	0	0	1	2	0
13	0	0	0	0	0	2	0	0	0	1	0	0	1	0	0	2
14	0	0	0	0	0	0	2	0	0	0	1	0	2	0	0	1
15	0	0	0	0	0	0	0	2	0	0	0	1	0	2	1	0

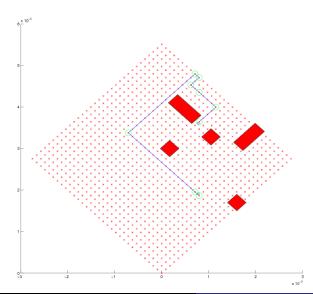

Fabrication


Conclusion


Matrice d'adjacence


Avant propos


Calcul récursif de la matrice d'adjacence 0 $AdjP(1,0) = \begin{bmatrix} 0 & 2^0 \\ 2^0 & 0 \end{bmatrix}$ $AdjP(N_{L},0) = \begin{bmatrix} AdjP(N_{L}-1,0) & 2^{N_{L}-1}\mathcal{I}(2^{N_{L}-1}) \\ 2^{N_{L}-1}\mathcal{I}(2^{N_{L}-1}) & AdjP(N_{L}-1,0) \end{bmatrix}$ $AdjP(N_{L},N_{R}) = \begin{bmatrix} AdjP(N_{L},N_{R}-1) & 2^{N_{R}-1}\mathcal{I}(2^{N_{L}+N_{R}-1}) \\ 2^{N_{R}-1}\mathcal{I}(2^{N_{L}+N_{R}-1}) & AdjP(N_{L},N_{R}-1) \end{bmatrix}$



Amélioration de l'algorithme

Algorithme A*

- amélioration de l'algorithme de Dijkstra
- utilisation d'une heuristique
- orienter les recherches du chemin optimal

DiMiBot Fabrication Avant propos Numérique Commande Conclusion

Amélioration de l'algorithme

Algorithme A*

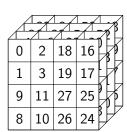
- amélioration de l'algorithme de Dijkstra
- utilisation d'une heuristique
- orienter les recherches du chemin optimal

Inconvénients de la matrice d'adjacence

- très consommatrice en mémoire (matrice carrée de taille 2^{2N})
- Recherche d'adjacents de complexité algorithmique $\mathcal{O}(2^N)$

Graphe hyper-cubique

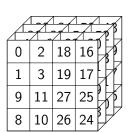
0 1 3


2

Graphe hyper-cubique

0	2	10	8
1	3	11	9
5	7	15	13
4	6	14	12

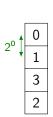
Graphe hyper-cubique


0	2	10	8
1	3	11	9
5	7	15	13
4	6	14	12

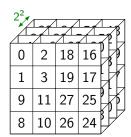
Graphe hyper-cubique

0	
1	
3	
2	

0	2	10	8
1	3	11	9
5	7	15	13
4	6	14	12



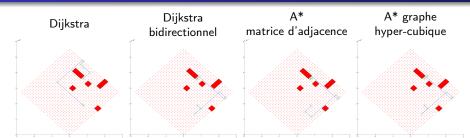
calcul itératif du graphe


$$G_0 = 0$$

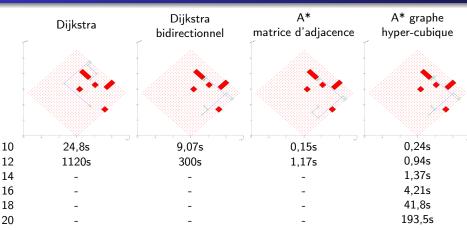
$$G_i = concat(i, G_{i-1}, G_{i-1} + 2^{i-1}, G_{i-1} + 2^{i-1} + 2^{N+i-1}, G_{i-1} + 2^{N+i-1})$$

Graphe hyper-cubique

2 ¹			
0	2	10	8
1	3	11	9
5	7	15	13
4	6	14	12

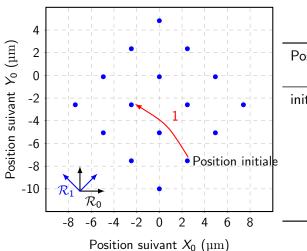


calcul itératif du graphe

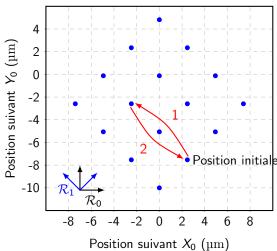

$$G_0 = 0$$

$$G_i = concat(i, G_{i-1}, G_{i-1} + 2^{i-1}, G_{i-1} + 2^{i-1} + 2^{N+i-1}, G_{i-1} + 2^{N+i-1})$$

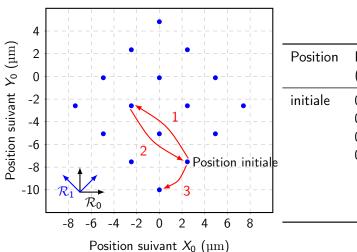
Comparaison des algorithmes



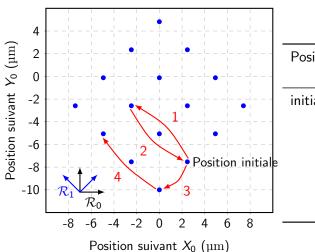
Comparaison des algorithmes

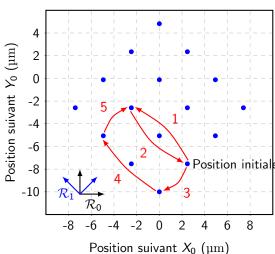

[- : limite de mémoire]

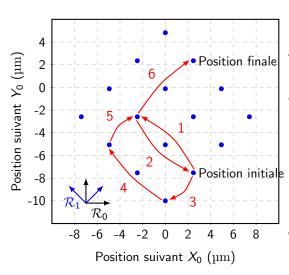
(sous linux, processeur Intel Core 2 Duo à 3,00GHz)



Position	Mot binaire $(bl_1bl_0br_1br_0)$
initiale	0100 0110
e	


Avant propos Numérique DiMiBot Fabrication Commande


١.		
	Position	Mot binaire
١.		$(bl_1bl_0br_1br_0)$
	initiale	0100
		0110
		0100
e		
J		


	Position	Mot binaire
		$(bl_1bl_0br_1br_0)$
	initiale	0100
		0110
		0100
_		0000
•		

Position	Mot binaire
	$(bl_1bl_0br_1br_0)$
initiale	0100
	0110
	0100
2	0000
	0010

	Position	Mot binaire $(bl_1bl_0br_1br_0)$
	initiale	0100
		0110
		0100
_		0000
_		0010
		0110

Position	Mot binaire $(bl_1bl_0br_1br_0)$
initiale finale	0100 0110 0100 0000 0010 0110 1110

Sommaire

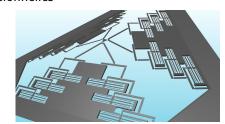
- 1 La robotique numérique
- Le DiMiBot
- 3 Dimensionnemen
- Microfabrication et caractérisation
- 5 Planification de trajectoire
- 6 Conclusion et perspectives

Conclusion

- Conception d'une architecture originale
- Mise en évidence de modélisations géométriques direct et inverse
- Analyse de dimensionnement des différents éléments de l'architecture robotique
- Fabrication du premier microrobot numérique
- Validation expérimentale du concept de microrobot numérique
 - utilisation en milieu confiné MEB
- Commande et planification de trajectoire du microrobot

Perspectives

- utilisation du premier prototype pour manipulation au sein d'un TEM
- actionnement à distance (par laser), faible consommation énergétique



Perspectives

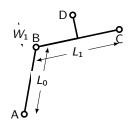
- utilisation du premier prototype pour manipulation au sein d'un TEM
- actionnement à distance (par laser), faible consommation énergétique
- Nouvelles architectures tridimensionnelles

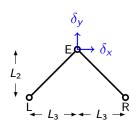
- Journaux internationaux à comité de lecture
- [1] V. Chalvet, Y. Haddab and P. Lutz, *A microfabricated planar digital microrobot for precise positioning based on bistable modules*, IEEE Transactions on Robotics, Accepté le 11 Janvier 2013, DOI: 10.1109/TRO.2013.2240174.
- [2] V. Chalvet, Y. Haddab, and P. Lutz, Control and trajectory planing of a non-redundant digital microrobot, article en cours d'écriture.
- Conférence internationale avec actes et à comité de lecture
- [3] V. Chalvet, A. Zarzycki, Y. Haddab and P. Lutz, *Digital microrobotics based on bistable modules : design of a non-redundant digital micropositioning robot*, IEEE International Conference on Robotics and Automation, Shanghai, ZH, May 2011, pp. 3628-3633.
- Chapitres de livres
- [4] Y. Haddab, V. Chalvet, Q. Chen and P. Lutz, *Digital Microrobotics using MEMS technology* in *Advanced Mechatronics and MEMS Devices*, Springer, ISBN 978-1-4419-9984-9, August 2012.
- [5] Y. Haddab, V. Chalvet, and M. Rakotondrabe, Approches de commande en boucle ouverte our les micro-manipulateurs flexibles à base de matériaux actifs, Hermes, en cours de soumission.
- Brevet
- [6] V. Chalvet, Y. Haddab A. Zarzycki and P. Lutz, *Micro-robot, procédé de commande, procédé de simulation et programmes d'ordinateur associés*, WO/2012/104546 Déposé en Février 2011, étendu à l'international en Janvier 2012.

MERCI DE VOTRE ATTENTION!

Liste des slides

- Avant-propos1, 2, 3
- 1 La robotique numérique 6, 7, 8, 9
- 2 Le DiMiBot 11, 12, 13, 14, 15, 16
- 3 Dimensionnement 18, 19, 20
- 4 Microfabrication et caractérisation 22, 23, 24
- **5** Planification de trajectoire 26, 27, 28, 29, 30, 31, 32, 33
- 6 Conclusion et perspectives 35, 36, 37

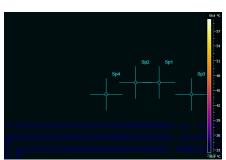

Annexes


- MGD
- Caméra thermique
- FEA
- Analyse modale
- Comparaison des algorithmes

Conclusion

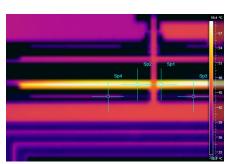
Modèle géométrique direct

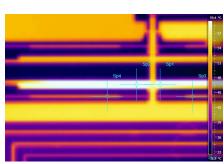
Numérique

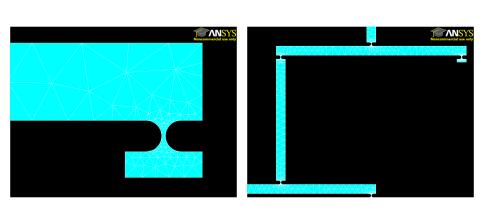


MGD généralisé

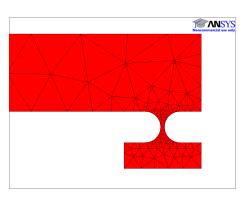
$$\begin{bmatrix} \delta_{x} \\ \delta_{y} \end{bmatrix} = \underbrace{\frac{\Delta}{4} \left(\frac{W_{1}}{L_{1}} + \frac{L_{2}}{2L_{3}} \right) \begin{bmatrix} 1 & 0 \\ 0 & \frac{L_{3}}{L_{2}} \end{bmatrix}}_{K} \begin{bmatrix} 1 & \dots & \left(\frac{1}{2}\right)^{N-1} & -1 & \dots & -\left(\frac{1}{2}\right)^{N-1} \\ 1 & \dots & \left(\frac{1}{2}\right)^{N-1} & 1 & \dots & \left(\frac{1}{2}\right)^{N-1} \end{bmatrix} \begin{bmatrix} b N - 1 \\ \vdots \\ b I_{0} \\ b r_{N-1} \\ \vdots \\ b r_{0} \end{bmatrix}$$

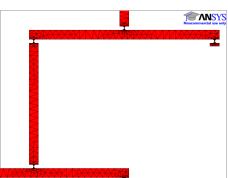

Caméra thermique

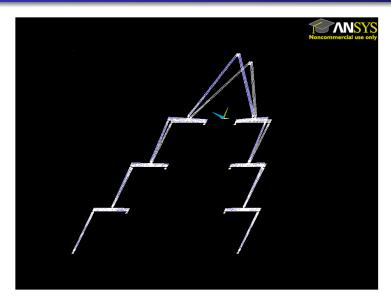

Caméra thermique

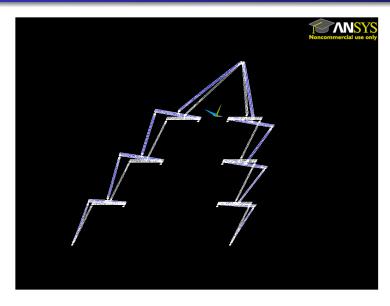


Caméra thermique

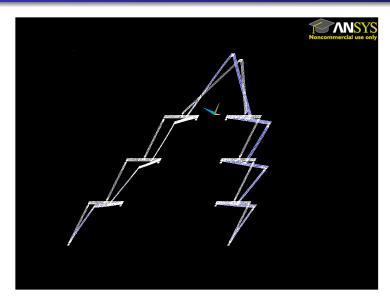


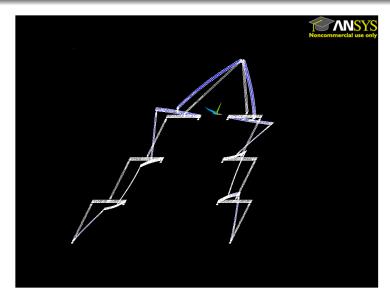


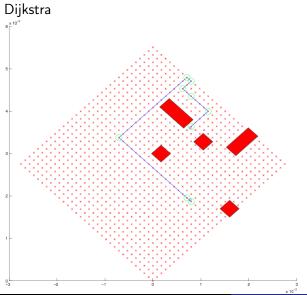

FEA

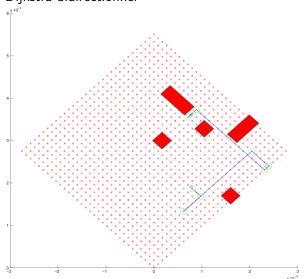


FEA









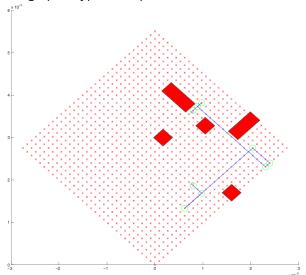
Comparaison des algorithmes

Comparaison des algorithmes

Dijkstra bidirectionnel

Comparaison des algorithmes

A* matrice d'adjacence



Numérique DiMiBot Dim. Fabrication Commande Conclusion

Comparaison des algorithmes

A* graphe hyper-cubique

Avant propos

